Skip to content

ELLIPTIC CURVES (SECOND EDITION)
Stock Photo: Cover May Be Different

ELLIPTIC CURVES (SECOND EDITION) Hardcover - 2020

by Milne, James S

  • Used
  • Good
  • Hardcover
Drop Ship Order

Description

hardcover. Good. Access codes and supplements are not guaranteed with used items. May be an ex-library book.
Used - Good
NZ$180.09
FREE Shipping to USA Standard delivery: 7 to 14 days
More Shipping Options
Ships from Bonita (California, United States)

Details

  • Title ELLIPTIC CURVES (SECOND EDITION)
  • Author Milne, James S
  • Binding Hardcover
  • Condition Used - Good
  • Pages 320
  • Volumes 1
  • Language ENG
  • Publisher World Scientific Publishing Company
  • Date 2020-09-17
  • Bookseller's Inventory # 9811221839.G
  • ISBN 9789811221835 / 9811221839
  • Weight 1.31 lbs (0.59 kg)
  • Dimensions 9 x 6 x 0.75 in (22.86 x 15.24 x 1.91 cm)

About Bonita California, United States

Biblio member since 2020
Seller rating: This seller has earned a 5 of 5 Stars rating from Biblio customers.

Terms of Sale: 30 day return guarantee, with full refund including original shipping costs for up to 30 days after delivery if an item arrives misdescribed or damaged.

Browse books from Bonita

From the publisher

This book uses the beautiful theory of elliptic curves to introduce the reader to some of the deeper aspects of number theory. It assumes only a knowledge of the basic algebra, complex analysis, and topology usually taught in first-year graduate courses.An elliptic curve is a plane curve defined by a cubic polynomial. Although the problem of finding the rational points on an elliptic curve has fascinated mathematicians since ancient times, it was not until 1922 that Mordell proved that the points form a finitely generated group. There is still no proven algorithm for finding the rank of the group, but in one of the earliest important applications of computers to mathematics, Birch and Swinnerton-Dyer discovered a relation between the rank and the numbers of points on the curve computed modulo a prime. Chapter IV of the book proves Mordell's theorem and explains the conjecture of Birch and Swinnerton-Dyer.Every elliptic curve over the rational numbers has an L-series attached to it.Hasse conjectured that this L-series satisfies a functional equation, and in 1955 Taniyama suggested that Hasse's conjecture could be proved by showing that the L-series arises from a modular form. This was shown to be correct by Wiles (and others) in the 1990s, and, as a consequence, one obtains a proof of Fermat's Last Theorem. Chapter V of the book is devoted to explaining this work.The first three chapters develop the basic theory of elliptic curves.For this edition, the text has been completely revised and updated.