Skip to content

No image available
No image available

Real-time Multi-chip Neural Network for Cognitive Systems Hardcover - 2019

by Zjajo, Amir (Editor)/ van Leuken, Rene (Editor)

  • New
  • Hardcover

Description

River Publishers, 2019. Hardcover. New. 232 pages. 9.50x6.25x0.75 inches.
New
NZ$238.41
NZ$20.97 Shipping to USA
Standard delivery: 14 to 21 days
More Shipping Options
Ships from Revaluation Books (Devon, United Kingdom)

About Revaluation Books Devon, United Kingdom

Biblio member since 2020
Seller rating: This seller has earned a 3 of 5 Stars rating from Biblio customers.

General bookseller of both fiction and non-fiction.

Terms of Sale: 30 day return guarantee, with full refund including original shipping costs for up to 30 days after delivery if an item arrives misdescribed or damaged.

Browse books from Revaluation Books

Details

  • Title Real-time Multi-chip Neural Network for Cognitive Systems
  • Author Zjajo, Amir (Editor)/ van Leuken, Rene (Editor)
  • Binding Hardcover
  • Condition New
  • Pages 264
  • Volumes 1
  • Language ENG
  • Publisher River Publishers
  • Date 2019
  • Illustrated Yes
  • Features Illustrated
  • Bookseller's Inventory # x-8770220344
  • ISBN 9788770220347 / 8770220344
  • Weight 1.21 lbs (0.55 kg)
  • Dimensions 9.21 x 6.14 x 0.63 in (23.39 x 15.60 x 1.60 cm)

From the publisher

Simulation of brain neurons in real-time using biophysically-meaningful models is a pre-requisite for comprehensive understanding of how neurons process information and communicate with each other, in effect efficiently complementing in-vivo experiments. In spiking neural networks (SNNs), propagated information is not just encoded by the firing rate of each neuron in the network, as in artificial neural networks (ANNs), but, in addition, by amplitude, spike-train patterns, and the transfer rate. The high level of realism of SNNs and more significant computational and analytic capabilities in comparison with ANNs, however, limit the size of the realized networks. Consequently, the main challenge in building complex and biophysically-accurate SNNs is largely posed by the high computational and data transfer demands.

Real-Time Multi-Chip Neural Network for Cognitive Systems presents novel real-time, reconfigurable, multi-chip SNN system architecture based on localized communication, which effectively reduces the communication cost to a linear growth. The system use double floating-point arithmetic for the most biologically accurate cell behavior simulation, and is flexible enough to offer an easy implementation of various neuron network topologies, cell communication schemes, as well as models and kinds of cells. The system offers a high run-time configurability, which reduces the need for resynthesizing the system. In addition, the simulator features configurable on- and off-chip communication latencies as well as neuron calculation latencies. All parts of the system are generated automatically based on the neuron interconnection scheme in use. The simulator allows exploration of different system configurations, e.g. the interconnection scheme between the neurons, the intracellular concentration of different chemical compounds (ions), which affect how action potentials are initiated and propagate.