Skip to content

Variational Problems with Concentration (Progress in Nonlinear Differential
Stock Photo: Cover May Be Different

Variational Problems with Concentration (Progress in Nonlinear Differential Equations and Their Applications, 36) Paperback - 2012

by Bach, Martin F

  • Used
  • Good
  • Paperback
Drop Ship Order

Description

paperback. Good. Access codes and supplements are not guaranteed with used items. May be an ex-library book.
Used - Good
NZ$242.57
FREE Shipping to USA Standard delivery: 7 to 14 days
More Shipping Options
Ships from Bonita (California, United States)

Details

About Bonita California, United States

Biblio member since 2020
Seller rating: This seller has earned a 5 of 5 Stars rating from Biblio customers.

Terms of Sale: 30 day return guarantee, with full refund including original shipping costs for up to 30 days after delivery if an item arrives misdescribed or damaged.

Browse books from Bonita

From the publisher

To start with we describe two applications of the theory to be developed in this monograph: Bernoulli's free-boundary problem and the plasma problem. Bernoulli's free-boundary problem This problem arises in electrostatics, fluid dynamics, optimal insulation, and electro chemistry. In electrostatic terms the task is to design an annular con- denser consisting of a prescribed conducting surface 80. and an unknown conduc- tor A such that the electric field 'Vu is constant in magnitude on the surface 8A of the second conductor (Figure 1.1). This leads to the following free-boundary problem for the electric potential u. - u 0 in 0. \A, u 0 on 80., u 1 on 8A, 8u Q on 8A. 811 The unknowns are the free boundary 8A and the potential u. In optimal in- sulation problems the domain 0. \ A represents the insulation layer. Given the exterior boundary 80. the problem is to design an insulating layer 0. \ A of given volume which minimizes the heat or current leakage from A to the environment ]R.n \ n. The heat leakage per unit time is the capacity of the set A with respect to n. Thus we seek to minimize the capacity among all sets A c 0. of equal volume.